1	(i)	$\mathrm{P}(20$ correct $)=\binom{30}{20} \times 0.6^{20} \times 0.4^{10}=0.1152$	M1 $\quad 0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number $=100 \times 0.1152=11.52$	M1 A1 FT (Must not round to whole number)	[2]
			TOTAL	[5]

\begin{tabular}{|c|c|c|c|c|}
\hline 2 \& (i) \& \begin{tabular}{l}
(A) \(\mathrm{P}(\) Low on all 3 days \()=0.5^{3}=0.125\) or \(1 / 8\) \\
(B) \(\mathrm{P}(\) Low on at least 1 day \()=1-0.5^{3}=1-0.125=0.875\) \\
(C) P (One low, one medium, one high)
\[
=6 \times 0.5 \times 0.35 \times 0.15=0.1575
\]
\end{tabular} \& \begin{tabular}{l}
M1 for \(0.5^{3}\) \\
A1 CAO \\
M1 for \(1-0.5^{3}\) \\
A1 CAO \\
M1 for product of probabilities \(0.5 \times\) \(0.35 \times 0.15\) or \({ }^{21} / 800\) \\
\(\mathrm{M} 1 \times 6\) or \(\times 3\) ! or \({ }^{3} \mathrm{P}_{3}\) \\
A1 CAO
\end{tabular} \& [2]
[2]
[3] \\
\hline \& (ii) \& \begin{tabular}{l}
\[
\mathrm{X} \sim \mathrm{~B}(10,0.15)
\] \\
(A) P (No days) \(=0.85^{10}=0.1969\) \\
Or from tables \(\mathrm{P}(\) No days \()=0.1969\) \\
(B) Either \(\mathrm{P}(1\) day \()=\binom{10}{1} \times 0.15^{1} \times 0.85^{9}=0.3474\) \\
or from tables \(\mathrm{P}(1\) day \()=\mathrm{P}(X \leq 1)-\mathrm{P}(X \leq 0)\) \\
\(=0.5443-0.1969=0.3474\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \(0.15^{1} \times 0.85^{9}\) \\
M1 \(\binom{10}{1} \times p^{1} q^{9}\) \\
A1 CAO \\
OR: M2 for 0.5443 -
\[
0.1969
\] \\
A1 CAO
\end{tabular} \& [2]

[3] \\

\hline \& (iii) \& | Let $X \sim \mathrm{~B}(20,0.5)$ |
| :--- |
| Either: $\mathrm{P}(X \geq 15)=1-0.9793=0.0207<5 \%$ |
| Or: Critical region is $\{15,16,17,18,19,20\}$ |
| 15 lies in the critical region. |
| So there is sufficient evidence to reject H_{0} |
| Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street. |
| H_{1} has this form as she believes that the probability of a low pollution level is greater in this street. | \& | Either: |
| :--- |
| B1 for correct probability of 0.0207 |
| M1 for comparison Or: |
| B1 for CR, |
| M1 for comparison |
| A1 CAO dep on B1M1 |
| E1 for conclusion in context |
| E1 indep | \& [5]

[17] \\
\hline
\end{tabular}

$\begin{aligned} & \hline 3 \\ & \text { (i) } \end{aligned}$	$X \sim B(15,0.2)$ (A) $\quad \mathrm{P}(\boldsymbol{X}=3)=\binom{15}{3} \times 0.2^{3} \times 0.8^{12}=0.2501$ OR from tables $\quad 0.6482-0.3980=0.2502$ (B) $\quad \mathrm{P}(\boldsymbol{X} \geq 3)=1-0.3980=0.6020$ (C) $\mathrm{E}(X)=n p=15 \times 0.2=3.0$	M1 $\quad 0.2^{3} \times 0.8^{12}$ M1 $\binom{15}{3} \times p^{3} q^{12}$ A1 CAO OR: M2 for 0.6482 - 0.3980 A1 CAO M1 $P(X \leq 2)$ M1 1-P(X<2) A1 CAO M1 for product A1 CAO	3 3 2
(ii)	(A) Let $p=$ probability of a randomly selected child eating at least 5 a day $\mathrm{H}_{0}: p=0.2$ $\mathrm{H}_{1}: p>0.2$ (B) H_{1} has this form as the proportion who eat at least 5 a day is expected to increase.	B1 for definition of p in context B1 for H_{0} B1 for H_{1} E1	4
(iii)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(15,0.2) \\ & \mathrm{P}(X \geq 5)=1-\mathrm{P}(X \leq 4)=1-0.8358=0.1642>10 \% \\ & \mathrm{P}(X \geq 6)=1-\mathrm{P}(X \leq 5)=1-0.9389=0.0611<10 \% \end{aligned}$ So critical region is $\{6,7,8,9,10,11,12,13,14,15\}$ 7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10\% A1 CAO for critical region dep on M1 and at least one B1 M1 dep for comparison A1 dep for decision and conclusion in context	6
		TOTAL	18

