1	(i)	P(20 correct) = $\binom{30}{20} \times 0.6^{20} \times 0.4^{10} = 0.1152$	M1 $0.6^{20} \times 0.4^{10}$ M1 $\binom{30}{20} \times p^{20} q^{10}$ A1 CAO	[3]
	(ii)	Expected number = $100 \times 0.1152 = 11.52$	M1 A1 FT (Must not round to whole number) TOTAL	[2]

2	(i)	(A) P(Low on all 3 days) = $0.5^3 = 0.125$ or $\frac{1}{8}$	M1 for 0.5 ³ A1 CAO	[2]
		(<i>B</i>) P(Low on at least 1 day) = $1 - 0.5^3 = 1 - 0.125 = 0.875$	$\begin{array}{c} M1 \text{ for } 1-0.5^3 \\ A1 \text{ CAO} \end{array}$	[2]
		(C) P(One low, one medium, one high) = $6 \times 0.5 \times 0.35 \times 0.15 = 0.1575$	M1 for product of probabilities $0.5 \times 0.35 \times 0.15$ or $^{21}/_{800}$ M1 × 6 or × 3! or $^{3}P_{3}$ A1 CAO	[3]
	(ii)	X ~ B(10, 0.15) (A) P(No days) = $0.85^{10} = 0.1969$ Or from tables P(No days) = 0.1969	M1 A1	[2]
		(B) Either P(1 day) = $\binom{10}{1} \times 0.15^1 \times 0.85^9 = 0.3474$ or from tables P(1 day) = P(X \le 1) - P(X \le 0) = 0.5443 - 0.1969 = 0.3474	M1 $0.15^{1} \times 0.85^{9}$ M1 $\binom{10}{1} \times p^{1} q^{9}$ A1 CAO OR: M2 for 0.5443 – 0.1969 A1 CAO	[3]
	(iii)	Let $X \sim B(20, 0.5)$ <i>Either</i> : $P(X \ge 15) = 1 - 0.9793 = 0.0207 < 5\%$ <i>Or</i> : Critical region is {15,16,17,18,19,20} 15 lies in the critical region. So there is sufficient evidence to reject H ₀	<i>Either:</i> B1 for correct probability of 0.0207 M1 for comparison <i>Or:</i> B1 for CR, M1 for comparison A1 CAO dep on B1M1	
		Conclude that there is enough evidence to indicate that the probability of low pollution levels is higher on the new street. H ₁ has this form as she believes that the probability of a low	E1 for conclusion in context E1 indep	[5]
		pollution level is greater in this street.	TOTAL	[17]

3	X ~ B(15, 0, 2)		
(i)	(A) $P(X = 3) = {\binom{15}{3}} \times 0.2^3 \times 0.8^{12} = 0.2501$	M1 $0.2^3 \times 0.8^{12}$ M1 $\binom{15}{2} \times p^3 q^{12}$	
	OB from tables $0.6482 + 0.2080 + 0.2502$	A1 CAO	3
	OR from tables $0.6482 - 0.3980 = 0.2502$	OR: M2 for 0.6482 – 0.3980 A1 CAO	
	$(B) P(X \ge 3) = 1 - 0.3980 = 0.6020$	M1 P(<i>X</i> ≤2) M1 1-P(X≤2) A1 CAO	3
	(C) $E(X) = np = 15 \times 0.2 = 3.0$	M1 for product A1 CAO	2
(ii)	(A) Let p = probability of a randomly selected child eating at least 5 a day H ₀ : p = 0.2	B1 for definition of p in context B1 for H ₀ B1 for H	
	(B) H_1 has this form as the proportion who eat at least 5 a day is expected to <u>increase</u> .	E1	4
(iii)	Let $X \sim B(15, 0.2)$ $P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.8358 = 0.1642 > 10\%$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.9389 = 0.0611 < 10\%$ So critical region is {6,7,8,9,10,11,12,13,14,15}	B1 for 0.1642 B1 for 0.0611 M1 for at least one comparison with 10% A1 CAO for critical	
		region <i>dep</i> on M1 and at least one B1	6
	7 lies in the critical region, so we reject null hypothesis and we conclude that there is evidence to suggest that the proportion who eat at least five a day has increased.	M1 <i>dep</i> for comparison A1 <i>dep</i> for decision and conclusion in context	
		TOTAL	18